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Abstract. The Kapitza conductivity (thermal boundav conductivity (TBC)) between two 
crystals is studied within a simple three-dimensional lattice dynamical model and the role of 
interface roughness on an atomic scale is investigated. The interface roughness is modelled 
by a random alloy monolayer A,  .rBz between the two semi-infinite crystals A and B and is 
treated by bulk alloy techniques adopted to the interface geometry. The dependence of the 
7~Contheacousticmismatchbetween the twocrystalsandthedegreeofroughnessisshown 
for avarietyofparametervalues. Our resultsindicateinallcasesanincreasein themcwith 
respect to the planar boundary; the increase becomes quite substantial (about 300%) for 
large acoustic mismatch values (about f )  and is due to diffuse phonon scattering. A com- 
parison with two limiting models that assume only specular or completely diffuse scattering 
is made. 

1. Introduction 

The determination of the heat flux crossing the boundary between two media, when 
at least one of them is an insulator, and the associated phonon boundary scattering 
mechanism, are presently not fully understood [l]. Discrepancies between theory and 
experiments have been reported for solid-liquid He and solid-solid interfaces, while 
diffuse phonon boundary scattering has been recognized as the mechanism mainly 
responsible for these discrepancies. 

In the case of solid-solid boundaries, which will concern us here, recent progress 
in the field is characterized by two achievements: first, the growth of high quality 
heterojunctions by, for example, molecular beam epitaxy (MBE) and related techniques 
and, second, the dominant participation of high-frequency phonons in the heat transfer 
process; the high-frequency (about 1 THz) phonons are either generated by heat pulse 
techniques [Z] or excited in room-temperature conductivity measurements [MI. These 
experiments motivated theoretical calculations of the phonon boundary cross section 
and the associated thermal boundary conductivity (TBC) in the framework of lattice 
dynamics theory [7-111 as opposed to earlier studies within elasticity theory. The dis- 
persion effects were shown to decrease the phonon transmission coefficient [7, %11] 
and consequently the TBC [7]. The possibility of polarization mixing (mode conversion) 
at the boundary has been demonstrated for a linear chain model [9] and a 3D model of 
the Ge-GeAs(001) interface [lo]. Finally, the first detailed model study of the TBC 
between two ~cclattices appeared recently [ll] and the temperature dependence of the 
TBC was shown to be similar to that of the bulk heat capacity; the mismatch of the 
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vibrational densitiesofstates (VDOS) wasshown to have a strong effect on the TBC, while 
the interface coupling strength plays only a secondary role, as long as it varies between 
the two crystal limits. 

However, all thesecalculations have been basedon theassumption that the boundary 
is planar on an atomic scale. which is very well known to be an oversimplification of any 
realistic situation. Interface imperfections (roughness) are always present and scatter 
the incident phonons diffusely. Consequently, some of the incident phonons that would 
be totally reflected if the boundary were planar do transmit by changing the value of 
their parallel momentum, and the overall transport across the boundary is largely 
modified. With respect to conductivity experiments, the effect of diffuse scattering 
is expected to be more pronounced at temperatures at which the dominant phonon 
wavelength is comparable to the defect size. This is, for example, the case for atomic- 
scale defects (a few Angstroms) in the high-Tregime. Experimental evidence for dev- 
iations of the high-Tmc from the predictions for a planar boundary appeared recently 
[>5] and the role of interface quality as a cause of these deviations has been underlined. 
Many theoretical efforts have been made in the past [12] to include the diffuse scattering 
channel in the calculation of the TBC, but they were all restricted to the low-T regime 
where the dispcrsion effectsare negligible and the solid is treated as an elasticcontinuum. 

In a previous paper [13], we presented a lattice dynamical formalism for the cal- 
culation of the phonon boundary cross section at a microscopically rough interface 
between two crystals. The purpose of this paper is to use this formalism to calculate the 
mcofsuchaninterfaceand todiscussthe roleofinterface roughness. Also,acomparison 
with two limiting models is made, namely, a model that assumes the presence of a 
perfectly ordered boundary layer of intermediate impedance and the diffuse mismatch 
model (DMM) of Swam and Pohl [6] that assumes completely diffuse boundary 
scattering. To do this, we use an interface between two simple cubic lattices with first- 
nearest-neighbour interactions. Although our lattice model is highly simplified, mainly 
because it  doesnot allow for polarization mixingat the boundary, it demonstratesclearly 
the effect of a thin disordered boundary layer on the TBC while it reproduces the basic 
features of more realistic models [ 10, 111. In  section 2 we give the definitions of the basic 
physical quantities and derive the expression of the TBC for a single-branch model. The 
symmetry properties of the mc are discussed, and the microscopic and phenom- 
enological approaches to the calculation of the transmission probability are described. 
In section 3 we give the numerical results for the simple-cubic interface and in the last 
section we suminarize our findings and relate these to recent experiments. 

2. Formalism 

2.1. Thermal boundary conductivity 

When the two sides of an interface are at temperatures Tand T - AT, there is a net heat 
flux AQ(T) across the boundary per unit area per unit time. The TBC is then defined [6] 
as 

O(T) = AQ(T)/AT. (1) 
Thenet flux AQ(T)isthedifference between thefluxescrossingthe boundaryinopposite 
directions: 
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A8(T) /&A-B(T) I - I QB-A(T - AT)/ AT-  Of .  (2) 
In particular, the flux from A to B is 

+d3k 
QA-B(T) = (I( (z , )an(w~(k) ,  T)hwA(k)vA(k)tBA(k) (3) 

3BZ 

where n(w,  T )  is the equilibrium Bose-Einstein distribution, vA(k) the perpendicular 
to the boundary component of the phonon group velocity and tBA(k) the transmission 
probability for an incident phonon of wavevector k; its derivation is discussed below. 
The + sign at the integral means that only phonons travelling towards the interface 
contribute. Contribution from different phonon branches are neglected in equation (3), 
which is therefore valid within the single-branch approximation adopted in this work. 
A symmetric expression holds for the flux from B to A. One could perform numerically 
the summation in equation (3) by generating a large set of points in the bulk crystal 
Brillouin zone. However, this procedure is quite cumbersome even for a periodic 
boundary [ll],  as a selection rule must be implemented for the points that conserve the 
phonon energy (and parallel momentum, ifthe boundaryisperiodic). However, it would 
be quite beneficial if the scattering events are grouped according to the incident phonon 
frequency, which implies the following transformation: 

where kp is the component of the phonon wavevector parallel to the boundary and q the 
component perpendicular to it. Note that, although the Cartesian components of k are 
independent variables, the new variables (w,  kp) are not. because they are related 
through the phonon dispersion. For this reason, the integral over k,  in equation (4) 
extends only over the projection SA of the phonon isofrequency surface on the two- 
dimensional Brillouin zone corresponding to the interface plane structure [13], After 
this transformation, equation (3) reads 

where 

d'k, 
FBA(W) = 11 ( , , ) Z t B A ( k )  E F(mA,mB; w) (4) 

S * ( 4  

is the transmission spectral density (TSD) [l I] with dependence on the atomic masses of 
the two crystals indicated. The dependence on the force constants is not considered 
here; thevalidityofthemassapproximationforthe interfaceisdiscussedat rhe beginning 
of section 3. The following two symmetry properties hold for the TSD: 

(i) the detailed balance 

F(mA,mB;w)=F(mB,m,;w) ( 7 4  

F(mA,mB;w)  = F(Am,,AmB;A'"w) A € % .  (76) 

(ii) thescaling law 

Equation (7a) expresses the thermodynamic requirement that no net flux should 
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occur when the system is at equilibrium (AT = 0), and it is a direct consequence of the 
reciprocity relation obeyed by the transmission coefficient [13]. Equation (76) indicates 
that the TSD is only a function of the mass ratio r = mB/mh. As a consequence of these 
two equations, only interfaces with r < 1 (or r 2 1) need to be studied. We would like 
to point out here that it is not straightforward that equation (7a) is valid for a diffuse 
boundary; however, because the diffuse scattering is calculated in a self-consistent 
manner [13]. no dissipation enters the system and the scattering process is reversible. 

The average transmission coefficient for phonons of frequency w is defined as 

and one can easily show, using equation (6). that 

Finally, because of the detailed-balance condition, equation (7a), themccan be written 
as 

( fBA(W))  = [ (h)2 /sA(w) lFBA(w) .  (9) 

and the following symmetries hold as a consequence of equation (7): 
(i) the inrerchange symmerrj 

U(mA,mB; T )  = U(fnB,mA; T )  (114 

u(mA.mg;  T )  = u(AmA,AmB;A”2T) A€%. (1lb) 
As mentioned above, equation (1 1) implies that only systems with r < 1 (or r 3 1) need 
to be studied. 

Furthermore, wedenote by wDand To the Debyefrequency andDebye temperature, 
respectively, and define the reduced frequency Q = w/wD and reduced temperature 
0 = T/To. Equation (10) then provides 

(ii) the scaling law 

C(Q, 0) = ( x 2  expx) (expx - x = Q/Q (12) 
where C(Q, 0) is the heat capacity per phonon of frequency Qat temperature 0. In the 
limit of very high temperatures, 

a- = 
lim [C(Q, O)] = 1 (13) 

and the conductivity reaches a saturation value given by 

u(m) = - klzD loz dQ FBA(Q), 

2.2. Microscopic calculation of rBa(k) 

For a boundary between two crystals that deviates from perfect crystallinity, the trans- 
mission coefficient can be written in the form 

where ( k ,  w) characterizes the incident phonon, A and B indicate the two crystals, and 
fBA(k) = t&(k) -t tdBA(k) w =fixed (15) 
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the superscripts represent the types of scattering process, namely specular or diffuse. 
Each term in equation (15) is a sum over all final states, consistent with the selection 
rules, of the squared scattering amplitudes weighted by the densities of the initial and 
final states. In the Green function method, used here, the scattering amplitude is the 
Fourier transform of the appropriate t-matrix; the latter can he, in turn? written as a sum 
of two terms describing the scattering off an effective (periodic) boundary and the 
fluctuations away from it [ 131. In this work, we assume that the interface deviations from 
crystallinity are due to interdiffusion of both types of atom that form a thin interface 
alloy layer. The various approximations in performing the configurational average for 
the interface alloy [13] are included in the calculation for the transmission coefficient. 
In the next section, we compare the results of two approximations: the virtual crystal 
approximation (VCA) and the coherent potential approximation (CPA) [14]. The VCA 
describes the random alloy as a crystal with average mass and force constant values, and 
it completely neglects the alloy fluctuations which give rise to the diffuse component in 
equation (15). The CPA includes in a self-consistent way the single-site alloy fluctuations 
only. 

2.3. Phenomenological cakulation of tBA(k) 

According to the DMM [ 6 ] ,  the interface imperfections act as spherically symmetric 
radiatingcentresthat emit theincident fluxintothe twosidesofthe boundaryirrespective 
of the incoming direction. This assumption dictates the approximation 

and from this 
teA(k )  = ( tBA(w))  (16) 

( I A B ( W ) )  = (TA,%(@)) = 1 - (IBA(@)) (17) 
where r ,  is the reflection coefficient for side A; the first equality in equation (17) 
expresses the loss of ‘memory’ of the incident phonon as regards its origin and the second 
the flux conservation law. Furthermore, in thermodynamic equilibrium ( A T =  0) the 
fluxes in opposite directions must he equal: 

3. Numerical results 

Consider a (001) interface between two monoatomic lattice-matched simple-cubic crys- 
tals with first-nearest-neighbour forces. In this lattice model, the three directions of 
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Figure 2. YDOS for the simple cubic model. 
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atomic motion are completely decoupled and the calculation is therefore restricted to a 
single-phonon branch. The parametersofthe model are the atomicmassinand the force 
constant f. As has been demonstrated in [ll], the TBC is very sensitive to the VDOS 
mismatch rather than to the model parameters themselves; therefore, we can simplify 
the calculation by assuming that the two crystals have the same force constants and vary 
the mismatch through the in-values only. Furthermore, we assume that the interface 
roughness consists of only one atomic plane at the interface which is randomly occupied 
by atoms of both crystals (figure 1). The microscopic transmission coefficient for this 
model has been studied previously [13]. 

The dispersion relation of the simple-cubiccrystal with first-nearest-neighbour coup- 
lings is 

&(k) = 0:[3 - COS(k,Q) - COS(k,Q) - COS(qQ)] 

wherek = (kx .  k , ,  q)  = ( k p , q ) ,  wg = 2f/mandaisthelatticeconstant.Thevoosforthe 
bulk crystal is shown in figure 2.  The acoustic impedance Z is defined as the prodiuct of 
the sound velocity c, and the mass density p .  In  our model, p = m / d ,  and the sound 
velocity is obtained from the Taylor’s expansion of the dispersion relation for small 
wavevectors; the result is c, = awe and, therefore, Z = ~I’(2fnt)l~~. 

The analysis of the thermal propcrties that follows requires the determination of 
the Debye frequency wD. This is obtained from wD = kDc,, where ko is the Debye 
wavevector, which is equal to the radius of a sphere in k-space that contains the same 
number of states as the bulk Brillouin zone; we obtain kD = a ( 6 ~ ’ ) ’ / ~  and, finally, wD = 
( 6 * ) ‘ b , .  
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InwhatfoIlowswehaveconstantlyassumedthatm,= f A  = f B  = f A B  = Iandm,< 1. 
Weshowinfigures3and4the~so((16), (20))fordifferentmassratiovaluesthatsample 
the whole range of impedance ratios for the most common metal-insulator boundaries 
(approximately from 1/1 up to 1/5) [6]. The degree of interface disorder has been varied 
through the value of the light-atom concentration in the interface alloy. 

For small mismatch values (figure 3(a)) the diffuse phonon scattering makes only a 
minor contribution to the TSD near the maximum frequency of the heavy crystal; thus, 
specular phonon scattering and diffuse phonon scattering occur over a common fre- 
quency range. In addition, the small values of the diffuse scattering rates indicate that 
the VCA is a good approximation in trealing the boundary alloy. Compared with the TSD 
for the clean boundary (figure 4(a)), the VCA and CPA predict an increased TSD, while 
the DMM predicts a decreased value. The reason for this qualitative difference lies in the 
basic assumption of the DMM that the phase coherence is complete lost for phonons 
scattered at the boundary; this is a had approximation when the mismatch is small and 
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the ‘critical cone’ wide [E]. Finally, note that the CPA and VCA results do not change 
appreciably with the interface alloy composition; this behaviour is expected, because 
the alloy potential is weak (-Am U’). 

As the mismatch grows (figures 3(b)-3(d) and 4(b)-4(d)), the role of diffuse scat- 
tering becomes increasingly important, as expected, and for certain frequencies and 
alloy compositions makes the dominant contribution. The maximum of the diffuse 
scattering appea s a t  around thecut-offfrequencyforspecular transmission; this feature 
arises because phonons at this frequency suffer total specular reflection at the boundary 
and therefore have a quite substantial amplitude at the disordered interface plane, 
which makes them particularly sensitive to the alloy fluctuations. The Dhmi neglects the 
possibility of total reflection and predicts maximum transmission near the maximum 
frequency of the heavy crystal, which is simply a bulk VDOS effect (see figure 4). Note 
also that the diffuse component of the TSD is very sensitive to the alloy composition 
unlike the specular component. Furthermore, the CPA again predicts an increase in the 
TSD compared with the clean boundary, but opposite to thecase of small mismatch, with 
values lying below the DMM predictions. As we mentioned above, we can attribute this 
feature to the assumption that in the DMM it is possible for all phonons to transmit by 
escaping outside the critical cone; since for large mismatches the cone is very narrow, 
the transmission is greatly e-.hanced by this assumption. The CPA. on the other hand, 
also allows phonons to escape outside the critical cone, but the interference effects that 
are included (up to the single-site approximation) impose restrictions on the escape 
process. Finally, note that an asymmetry develops in the CPA results around the case of 
maximum disorder (c = 0.5) with increasing mismatch and, therefore, with inceasing 
values of the alloy potential. The VCA results remain symmetric. This dependence on 
alloy composition is similar to bulk alloy spectra [13,14]. 

Consider next the results for the conductivity. equation (12), shown in figure 5 .  At 
low temperatures (0 Q 1) it shows a power-law dependence on the temperature and at 
high temperatures (0 2 1) it is constant (saturation regime). The CPA treatment shows 
that the effect of the interface roughness is to increase the TBC at all temperatures, for 
any boundaries and any interface alloy composition. The same conclusion has been 
reached in the treatment of the problem in the continuum limit [12]. On the contrary, 
the DMM predicts a reduction in the conductivity for small mismatch values (figure 
5(a))  and an increase for large mismatch values (figure 5 ( d ) ) ;  a crossover is seen at 
intermediate mismatch (figures 5(b) and 5(c)). The origin of these differences has been 
discussed above, in connection with the TSD. 

The temperature dependence is also modified by the interface roughness. The 
evaluation of the slope of the CPA curves in figure 5 has shown that for sufficiently 
low temperatures (0 =s 0.1) the temperature exponent is increased by Y 5 0.5. The 
deviations from the T3-Iaw predicted by the DMM occur at higher temperatures than the 
microscopic model, as can be clearly seen for large mismatch values. The origin of this 
behaviour lies in the assumption made in the DMM that the transmission coefficient is 
independent of the incident phonon wavevector, equation (16); consequently, high- 
frequency phonons (i.e. dominant phonons at 0 = 1) for which the scattering cross 
section is highly anisotropic [13] are basically treated sindarly to phonons in the linear 
dispersion regime that are known to give rise to the T3-dependence [16]. 

Major changesdue to the interfaceroughnessoccur in the saturation regime, where 
the dominant phonon wavelength iscomparable with the defect size (about a). We show 
infigure6thedependenceof thesaturationconductivity,equation (14),on the mismatch 
and interface alloy composition. The asymmetry of the CPA results around the maximum 
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disorder is a direct consequence of the same asymmetry appearing in the TSD. The CPA 
and VCA results are comparable for certain mismatch and alloy concentration values. 
At certain parameter values, the alloy acts as a weakly scattering medium and the 
fluctuations become unimportant, and the VCA and CPA results are comparable. The 
prediction for such a behaviour could be deduced by simply examining the imaginary 
part of the self-energy [14]. Note, finally, that for small mismatch values the alloy is 
always weakly scattering for all concentrations. 

4. Conclusions 

We have presented a first fully microscopic ca!culation of the thermal boundary con- 
ductivity between two crystals including the effect of atomic-scale roughness within a 
monolayer. Our results indicate an increase in the conductivity at all temperatures 
relative to the planar boundary. In the saturation regime the increase is by a factor of 2- 
3forimpedanceratiosof34, whichisofthesamemagnitudefoundinrecentexperiments 
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such as those by Young et a l [ 3 ]  and Swartz and Pohl[6]. This suggests that the interface 
roughness could be responsible for the discrepancies between theory and experiment. 
The comparison with a phenomenological model (DMM) has shown qualitative dis- 
agreement for small mismatch values, since the latter predicts a conductivity reduction 
due to roughness, and a rather quantitative disagreement for large mismatch values, 
where the DMM predicts much larger increases. The DMM is therefore expected to be of 
reduced validity in the high-temperature regime and nearly ideal interfaces, as, for 
example those grown by MBE. Future experiments in this direction would be very useful. 

For abettercomparison withrecentexperiments,certainaspectsofour modelshould 
be improved and extended. For example, the use of a more realistic lattice dynamical 
model, the inclusion of more than one disordered layer and the comparative study of 
different types of defect, such as dangling bonds and islands. 
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